Apollo lunar rocks show moon is way older than we thought

A new study of Apollo lunar rocks suggests that the moon is older than anyone believed.

The moon, researchers now say, likely formed about 50 million years after the solar system did, which is much earlier than the previous estimate of 150 million years after solar-system formation. A German-led group ferreted out the new estimate by studying three rare elements.

The traditional scientific origin story of the moon goes like this: The solar system arose about 4.56 billion years ago from a cloud of gas and dust in our cosmic neighborhood. Then, early in Earth’s history, a Mars-size object careened into our planet. The invader got smashed to bits and took out a big chunk of our planet with it. This collision formed a huge debris cloud around Earth that over eons coalesced into our moon.

Related: How the Moon Evolved: A Photo Timeline

The newly theorized lunar age of 4.51 billion years, however, came after the team reanalyzed samples brought back by Apollo astronauts around 50 years ago. Such studies have happened many times before, but as instruments improve with advancing technology, it’s possible for experts to make more-sensitive measurements of the rocks.

A sample collected during the Apollo 12 mission is predominantly ilmenite basalt and also includes glass created by an impact.Maxwell Thiemens

The scientists behind the new research zeroed in on the magma ocean that covered the moon shortly after the natural satellite formed; over time, this ocean cooled into the darker basalt regions still visible on the moon today. The researchers measured characteristics of three rare elements within this material: hafnium, uranium and tungsten.

These three elements act like a sort of cosmic clock because they are radioactive and decay into other elements at a predictable rate. Scientists can base analyses on how long it takes for half of a sample of a radioactive element to decay, the element’s half-life, and calculate the age of rocks. This process works on any rocky body: Earth, the moon, Mars and the like.

Related: How NASA’s Apollo Astronauts Went to the Moon

“By comparing the relative amounts of different elements in rocks that formed at different times, it is possible to learn how each sample is related to the lunar interior and the solidification of the magma ocean,” Raúl Fonseca, a co-author on the new research and a geochemist at the University of Cologne in Germany, said in a statement.

source: nbcnews.com