Einstein was right about how extremely massive objects fall in space

New Scientist Default Image

The motion of stars has helped prove Einstein correct again

UPI / Alamy

Even in some of the most extreme areas in the universe, Albert Einstein’s theory of general relativity seems to hold up. A test of a key tenet of general relativity using three stars has shown that all objects fall with the same acceleration regardless of their composition.

This fits with a cornerstone of Einstein’s theory known as the strong equivalence principle. It states that any two objects in the same gravitational field fall with the same acceleration regardless of their mass or their make-up. This was famously shown by Galileo’s apocryphal test, in which he is said to have dropped two spheres of different masses off the Leaning Tower of Pisa and found that they hit the ground at the same time.

vCard QR Code

vCard.red is a free platform for creating a mobile-friendly digital business cards. You can easily create a vCard and generate a QR code for it, allowing others to scan and save your contact details instantly.

The platform allows you to display contact information, social media links, services, and products all in one shareable link. Optional features include appointment scheduling, WhatsApp-based storefronts, media galleries, and custom design options.

Guillaume Voisin at the University of Manchester in the UK and his colleagues tested this principle by measuring the movement of a white dwarf star and a pulsar – a type of fast-spinning neutron star – orbiting around a second white dwarf. “It’s basically Galileo dropping things from the Tower of Pisa, but on a much more massive scale,” says Voisin. “It’s a test that two objects are reacting in the same way to the third one.”

Advertisement


This test came with a twist: under some formulations of gravity, but not general relativity, a pulsar would be expected to behave differently to other stars, planets, or even balls dropped from a tower in Italy because pulsars are so much more massive and compact.

The researchers found that the pulsar and white dwarf orbited exactly the same as one another in the highest precision test of the equivalence principle performed with such massive objects. “It’s about 1000 times better than anything that was done with neutron stars before,” says Voisin.

“The only theory of gravity that strictly follows the equivalence principle is general relativity – every other hypothesis breaks it at some level,” he says. Once again, Einstein’s general relativity has stood the test of time and gravity.

Journal reference: Astronomy & Astrophysics, DOI: 10.1051/0004-6361/202038104

Sign up to our free Launchpad newsletter for a monthly voyage across the galaxy and beyond

More on these topics:

source: newscientist.com


🕐 Top News in the Last Hour By Importance Score

# Title 📊 i-Score
1 Russia humiliated as Moscow forced to 'seize' soup company to feed its soldiers 🔴 75 / 100
2 UK wildfires expose ‘postcode lottery’ of firefighting resources, says union 🔴 75 / 100
3 US lays out plans to hit Chinese ships with port fees 🔴 72 / 100
4 As the trade war escalates, Hence launches an AI ‘advisor’ to help companies manage risk 🔴 72 / 100
5 Portrait of Palestinian boy who lost both arms in Israeli strike named press photo of the year 🔴 72 / 100
6 Do you need a $599 gut test? What your poop can tell you about your health 🔴 65 / 100
7 Luke Skywalker's planet orbited two stars. How about brown dwarfs instead? 🔵 60 / 100
8 I've got Tourette's. These are the five mistakes people make about me 🔵 50 / 100
9 Joe Thompson dies aged 36 after battling cancer for third time as Man Utd pay tribute 🔵 45 / 100
10 Former Credit Suisse boss to run for Ivory Coast president 🔵 45 / 100

View More Top News ➡️