Infinite Visions Were Hiding in the First Black Hole Image’s Rings

A year ago a team of radio astronomers startled the world with the first photograph of a black hole, lurking like the eye of Sauron in the heart of a distant galaxy. Now it appears there was more hiding in that image than we had imagined.

When you point a telescope at a black hole, it turns out you don’t just see the swirling sizzling doughnut of doom formed by matter falling in. You can also see the whole universe. Light from an infinite array of distant stars and galaxies can wrap around the black hole like ribbons around a maypole, again and again before coming back to your eye, or your telescope.

“The image of a black hole actually contains a nested series of rings,” said Michael Johnson of the Harvard-Smithsonian Center for Astrophysics, not unlike the rings that form around your bathtub drain.

Dr. Johnson was lead author of a study, describing the proposed method that would allow our telescopes to pry more secrets from the maw of any black hole, that was published in the March 18 edition of the journal Science Advances.

He and other authors of the paper are also members of the team operating the Event Horizon Telescope, a globe-girding network of radio telescopes that made that first image of a black hole. Their telescope saw these rings, but it didn’t have enough resolution to distinguish them, so they were blurred into a single feature.

The work, scientists with the project said, pointed toward new ways to shed light, so to speak, on the properties of black holes, particularly by adding a radio telescope in space to the existing E.H.T. network.

“This paper is, in my professional capacity, very cool!” Shep Doeleman, also of Harvard-Smithsonian and leader of the E.H.T. collaboration, said in an email.

Andrew Strominger, a Harvard theorist and co-author of the paper, said, “Understanding the intricate details of this historic experimental observation has forced theorists like myself to think about black holes in a new way.”

But the Event Horizon’s work has barely begun, Dr. Doeleman said. For one thing the scientists are trying to make a movie of the supermassive black hole in the center of our own Milky Way galaxy; a summertime attempt was recently called off because of the coronavirus pandemic.

If they could increase the size of their event horizon network by adding an antenna in space, Dr. Doeleman said, they could gain enough resolution to see individual photon rings, as they are called, turning the event horizon into “a true cosmic laboratory for testing our most fundamental theories.”

As Peter Galison of Harvard, another E.H.T. collaborator said, “As we peer into these rings, we are looking at light from all over the visible universe, we are seeing farther and farther into the past, a movie, so to speak, of the history of the visible universe.”

Dr. Johnson said there were several space radio telescopes on the drawing boards that could fit the bill. One is a Russian mission called Millimetron, which is optimistically hoping to launch in 2029. Another is the Origins Space Telescope, which has been proposed to NASA for a launch in 2035.

Dr. Johnson said astronomers don’t know the mass of the M7 black hole they revealed last year to better than 10 percent accuracy, nor do they know if and how fast it is spinning. A space mission with a radio antenna would allow them to see the ring structure and determine the M87’s mass to an accuracy of a fraction of a percent, and could estimate its spin.

All this if Einstein was right, he added. Other theories of gravity and other types of compact objects (wormholes, naked singularities, boson stars) would suggest a very different ring structure.

“So this is a way of studying exactly what lies at the centers of galaxies, in a way that we can never learn from larger scale measurements such as the orbits of stars or gas,” Dr. Johnson said.

source: nytimes.com